Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1382844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689728

RESUMO

Equine metabolic syndrome (EMS) is a critical endocrine condition in horses, characterized by hyperinsulinemia, hyperlipidemia, and insulin resistance, posing a significant threat to their health. This study investigates the efficacy of supplementing EMS-affected horses with Arthrospira platensis enriched with Cr(III), Mg(II), and Mn(II) ions using biosorption process in improving insulin sensitivity and glucose tolerance, reducing inflammation, and mitigating obesity-related fat accumulation. Our results demonstrate that Arthrospira supplementation reduces baseline insulin and glucose levels, contributing to decreased adipose tissue inflammation. Furthermore, Arthrospira supplementation results in a decrease in body weight and improvements in overall body condition scores and cresty neck scores. Additionally, administration of Arthrospira leads to reduced levels of triglycerides and aspartate aminotransferase, indicating a decrease in hepatic adiposity and inflammation. These findings suggest that Arthrospira, enriched with essential micro- and macroelements, can be an advanced feed additive to enhance insulin sensitivity, promote weight reduction, and alleviate inflammatory processes, thereby improving the overall condition of horses affected by EMS. The use of Arthrospira as a feed additive has the potential to complement conventional management strategies for EMS.


Assuntos
Ração Animal , Cromo , Suplementos Nutricionais , Doenças dos Cavalos , Inflamação , Resistência à Insulina , Magnésio , Manganês , Síndrome Metabólica , Spirulina , Animais , Cavalos , Inflamação/metabolismo , Síndrome Metabólica/veterinária , Síndrome Metabólica/metabolismo , Doenças dos Cavalos/metabolismo , Doenças dos Cavalos/prevenção & controle , Ração Animal/análise , Magnésio/metabolismo , Masculino , Feminino
2.
Curr Issues Mol Biol ; 46(4): 3251-3277, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38666934

RESUMO

Corneal ulcers, characterized by severe inflammation of the cornea, can lead to serious, debilitating complications and may be vision-threatening for horses. In this study, we aimed to investigate the role of endoplasmic reticulum (ER) stress in corneal stem progenitor cell (CSSC) dysfunction and explore the potential of equine adipose-derived stromal stem cell (ASC)-derived extracellular vesicles (EVs) to improve corneal wound healing. We showed that CSSCs expressed high levels of CD44, CD45, and CD90 surface markers, indicating their stemness. Supplementation of the ER-stress-inducer tunicamycin to CSSCs resulted in reduced proliferative and migratory potential, accumulation of endoplasmic reticulum (ER)-stressed cells in the G0/G1 phase of the cell cycle, increased expression of proinflammatory genes, induced oxidative stress and sustained ER stress, and unfolded protein response (UPR). Importantly, treatment with EVs increased the proliferative activity and number of cells in the G2/Mitosis phase, enhanced migratory ability, suppressed the overexpression of proinflammatory cytokines, and upregulated the anti-inflammatory miRNA-146a-5p, compared to control and/or ER-stressed cells. Additionally, EVs lowered the expression of ER-stress master regulators and effectors (PERK, IRE1, ATF6, and XBP1), increased the number of mitochondria, and reduced the expression of Fis-1 and Parkin, thereby promoting metabolic homeostasis and protecting against apoptosis in equine CSSCs. Our findings demonstrate that MSCs-derived EVs represent an innovative and promising therapeutic strategy for the transfer of bioactive mediators which regulate various cellular and molecular signaling pathways.

3.
J Am Vet Med Assoc ; : 1-9, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38479108

RESUMO

OBJECTIVE: Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) are promising avenues in regenerative medicine, offering unique immunomodulatory and regenerative properties with lower immunogenicity. This study delves into the distinctive features of EVs extracted from feline adipose-derived MSCs (ASCs) and placenta-derived MSCs (PMSCs). The tissues were collected from 11 female cats aged between 4 and 7 years old. SAMPLE: EVs extracted from MSCs from discarded fetal membranes from 7 female cats and SC adipose tissue from 11 cats. METHODS: We comprehensively explored morphological characteristics, mitochondrial density, surface markers, and pro- and anti-inflammatory mediators, uncovering notable differences between ASCs and PMSCs. RESULTS: Morphologically, ASCs exhibit a spindle-shaped form in contrast to the spherical morphology of PMSCs. Proliferation and clonogenic potential assessments reveal the faster proliferation and robust clonogenic nature of ASCs, suggesting their potential vital role in regenerative processes. Surface marker expression analysis indicates a significantly higher expression of multipotency-associated markers in ASCs, suggesting their superior proregenerative potential. Phenotyping of EVs demonstrates distinctive features, with CD9 expression suggesting varied EV secretion patterns. Notably, PMSCs exhibit superior CD81 expression, indicating their potential as preferred donors of mitochondria. Pro- and anti-inflammatory mediators analyzed at mRNA and microRNA levels reveal higher RNA content in EVs compared to source cells, emphasizing the potential of EVs in directing regenerative processes. Differential microRNA expression in EVs derived from ASCs hints at their regulatory roles in anti-inflammatory and immunometabolic processes. CLINICAL RELEVANCE: This study lays a foundation for understanding the nuances between ASCs and PMSCs, which is crucial for harnessing the full therapeutic potential of MSCs and their EVs in tissue repair and regeneration.

4.
Cells ; 13(2)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38247843

RESUMO

Equine metabolic syndrome (EMS) is a significant global health concern in veterinary medicine. There is increasing interest in utilizing molecular agents to modulate hepatocyte function for potential clinical applications. Recent studies have shown promising results in inhibiting protein tyrosine phosphatase (PTP1B) to maintain cell function in various models. In this study, we investigated the effects of the inhibitor Trodusquemine (MSI-1436) on equine hepatic progenitor cells (HPCs) under lipotoxic conditions. We examined proliferative activity, glucose uptake, and mitochondrial morphogenesis. Our study found that MSI-1436 promotes HPC entry into the cell cycle and protects them from palmitate-induced apoptosis by regulating mitochondrial dynamics and biogenesis. MSI-1436 also increases glucose uptake and protects HPCs from palmitate-induced stress by reorganizing the cells' morphological architecture. Furthermore, our findings suggest that MSI-1436 enhances 2-NBDG uptake by increasing the expression of SIRT1, which is associated with liver insulin sensitivity. It also promotes mitochondrial dynamics by modulating mitochondria quantity and morphotype as well as increasing the expression of PINK1, MFN1, and MFN2. Our study provides evidence that MSI-1436 has a positive impact on equine hepatic progenitor cells, indicating its potential therapeutic value in treating EMS and insulin dysregulation.


Assuntos
Colestanos , Resistência à Insulina , Síndrome Metabólica , Dinâmica Mitocondrial , Espermina , Animais , Glucose , Cavalos , Insulina/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Palmitatos , Espermina/análogos & derivados , Resistência à Insulina/fisiologia
5.
Front Mol Biosci ; 10: 1214961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146533

RESUMO

Equine metabolic syndrome (EMS) is a steadily growing endocrine disorder representing a real challenge in veterinary practice. As a multifactorial condition, EMS is characterized by three main metabolic abnormalities including insulin resistance, increased adiposity or obesity and hoof laminitis. Adipose tissue dysfunction is recognized as a core pathophysiological determinant of EMS, as it strongly participates to lipotoxicity and systemic metaflammation, both of which have been closely linked to the development of generalized insulin resistance. Besides, sex hormone binding globulin (SHBG) is an important sex steroids transporters that has been recently proposed as an important metabolic mediator. Therefore, the aim of this study was to verify whether SHBG treatment may ameliorate subcutaneous adipose tissue metabolic failure under EMS condition in terms of lipidome homeostasis, lipid metabolism programs, insulin signalling and local inflammation. Subcutaneous adipose tissue (SAT) biopsies were collected post-mortem from healthy (n = 3) and EMS (n = 3) slaughtered horses. SHBG protein has been applied to SAT samples from EMS horses for 24 h at a final concentration of 50 nM, while control groups (healthy and untreated EMS) were cultured in the presence of SHBG-vehicle only. Tissues from all groups were afterwards secured for downstream analysis of gene expression using RT-qPCR, protein levels by Western blot and ELISA assay and lipidomics through GC-MS technique. Obtained results showcased that SHBG intervention efficiently normalized the altered fatty acids (FAs) profiles by lowering the accumulation of saturated and trans FAs, as well as the pro-inflammatory arachidonic and linoleic acids. Moreover, SHBG showed promising value for the regulation of adipocyte lipolysis and engorgement by lowering the levels of perilipin-1. SHBG exerted moderated effect toward SCD1 and FASN enzymes expression, but increased the LPL abundance. Interestingly, SHBG exhibited a negative regulatory effect on pro-adipogenic stimulators and induced higher expression of KLF3, IRF3 and ß-catenin, known as strong adipogenesis repressors. Finally, SHBG protein showed remarkable ability in restoring the insulin signal transduction, IR/IRS/Pi3K/AKT phosphorylation events and GLUT4 transporter abundance, and further attenuate pro-inflammatory response by lowering IL-6 tissue levels and targeting the PDIA3/ERK axis. Overall, the obtained data clearly demonstrate the benefice of SHBG treatment in the regulation of adipose tissue metabolism in the course of EMS and provide new insights for the development of molecular therapies with potential translational application to human metabolic disorders.

6.
Int J Inflam ; 2023: 3803056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808009

RESUMO

Background: Hyperactivation of protein tyrosine phosphatase (PTP1B) has been associated with several metabolic malfunctions ranging from insulin resistance, metaflammation, lipotoxicity, and hyperglycaemia. Liver metabolism failure has been proposed as a core element in underlying endocrine disorders through persistent inflammation and highly fibrotic phenotype. Methods: In this study, the outcomes of PTP1B inhibition using trodusquemine (MSI-1436) on key equine metabolic syndrome (EMS)-related alterations including inflammation, fibrosis, and glucose uptake have been analyzed in liver explants collected from EMS-affected horses using various analytical techniques, namely, flow cytometry, RT-qPCR, and Western blot. Results: PTP1B inhibition using trodusquemine resulted in decreased proinflammatory cytokines (IL-1ß, TNF-α, and IL-6) release from liver and PBMC affected by EMS and regulated expression of major proinflammatory microRNAs such as miR-802 and miR-211. Moreover, MSI-1436 enhanced the anti-inflammatory profile of livers by elevating the expression of IL-10 and IL-4 and activating CD4+CD25+Foxp3+ regulatory T cells in treated PBMC. Similarly, the inhibitor attenuated fibrogenic pathways in the liver by downregulating TGF-ß/NOX1/4 axis and associated MMP-2/9 overactivation. Interestingly, PTP1B inhibition ameliorated the expression of TIMP-1 and Smad7, both important antifibrotic mediators. Furthermore, application of MSI-1436 was found to augment the abundance of glycosylated Glut-2, which subsequently expanded the glucose absorption in the EMS liver, probably due to an enhanced Glut-2 stability and half-life onto the plasma cell membranes. Conclusion: Taken together, the presented data suggest that the PTP1B inhibition strategy and the use of its specific inhibitor MSI-1436 represents a promising option for the improvement of liver tissue integrity and homeostasis in the course of EMS and adds more insights for ongoing clinical trials for human MetS management.

7.
Cell Commun Signal ; 21(1): 230, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697311

RESUMO

BACKGROUND: Equine metabolic syndrome (EMS), which encompasses insulin resistance, low-grade inflammation and predisposition to laminitis is a critical endocrine disorder among the most prevalent conditions affecting horses from different breeds. According to the most recent research, low human sex hormone-binding globulin (SHBG) serum levels correlate with an increased risk of obesity, insulin resistance and diabetes, and may contribute to overall metabolic dysregulations. This study aimed to test whether exogenous SHBG could protect EMS affected adipose-derived stromal stem cells (EqASCEMS) from apoptosis, oxidative stress, ER stress and thus improve insulin sensitivity. METHODS: EqASCEMS wells were treated with two different concentrations (50 and 100 nM) of exogenous SHBG, whose biocompatibility was tested after 24, 48 and 72 h of incubation. Several parameters including cell viability, apoptosis, cell cycle, reactive oxygen species levels, ER stress, Pi3K/MAPK activation and insulin transducers expression were analysed. RESULTS: Obtained data demonstrated that exogenous SHBG treatment significantly promoted ASCs cells proliferation, cell cycle and survival with reduced expression of p53 and p21 pro-apoptotic mediators. Furthermore, SHBG alleviated the oxidative stress caused by EMS and reduced the overaccumulation of intracellular ROS, by reducing ROS + cell percentage and regulating gene expression of endogenous antioxidant enzymes (Sod 1, Cat, GPx), SHBG treatment exhibited antioxidant activity by modulating total nitric oxide (NO) levels in EMS cells as well. SHBG treatment dampened the activation of ER stress sensors and effectors in EqASCEMS cells via the upregulation of MiR-7a-5p, the decrease in the expression levels of ATF-6, CHOP and eiF2A and the restoration of PDIA3 chaperone protein levels. As a consequence, SHBG application substantially improved insulin sensitivity through the modulation of Pi3K/Akt/Glut4 insulin signalling cascades. CONCLUSION: Our results suggest that the SHBG is endowed with crucial beneficial effects on ASCs metabolic activities and could serve as a valuable therapeutic target for the development of efficient EMS treatment protocols. Video Abstract.


Assuntos
Resistência à Insulina , Células-Tronco Mesenquimais , Síndrome Metabólica , Globulina de Ligação a Hormônio Sexual , Animais , Humanos , Cavalos , Insulina , Obesidade , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio , Globulina de Ligação a Hormônio Sexual/farmacologia
8.
Stem Cell Rev Rep ; 19(7): 2251-2273, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37402098

RESUMO

BACKGROUND: Sex hormone binding globulin (SHBG) deteriorated expression has been recently strongly correlated to increased level of circulating pro-inflammatory cytokines and insulin resistance, which are typical manifestations of equine metabolic syndrome (EMS). Despite previous reports demonstrated the potential therapeutic application of SHBG for liver-related dysfunctions, whether SHBG might modulate equine adipose-derived stem/stromal cells (EqASCs) metabolic machinery remains unknown. Therefore, we evaluated for the first time the impact of SHBG protein on metabolic changes in ASCs isolated from healthy horses. METHODS: Beforehand, SHBG protein expression has been experimentally lowered using a predesigned siRNA in EqASCs to verify its metabolic implications and potential therapeutic value. Then, apoptosis profile, oxidative stress, mitochondrial network dynamics and basal adipogenic potential have been evaluated using various molecular and analytical techniques. RESULTS: The SHBG knockdown altered the proliferative and metabolic activity of EqASCs, while dampening basal apoptosis via Bax transcript suppression. Furthermore, the cells treated with siRNA were characterized by senescent phenotype, accumulation of reactive oxygen species (ROS), nitric oxide, as well as decreased mitochondrial potential that was shown by mitochondrial membrane depolarization and lower expression of key mitophagy factors: PINK, PARKIN and MFN. The addition of SHBG protein reversed the impaired and senescent phenotype of EMS-like cells that was proven by enhanced proliferative activity, reduced apoptosis resistance, lower ROS accumulation and greater mitochondrial dynamics, which is proposed to be related to a normalization of Bax expression. Crucially, SHBG silencing enhanced the expression of key pro-adipogenic effectors, while decreased the abundance of anti-adipogenic factors namely HIF1-α and FABP4. The addition of exogenous SHBG further depleted the expression of PPARγ and C/EBPα and restored the levels of FABP4 and HIF1-α evoking a strong inhibitory potential toward ASCs adipogenesis. CONCLUSION: Herein, we provide for the first time the evidence that SHBG protein in importantly involved in various key metabolic pathways governing EqASCs functions, and more importantly we showed that SHBG negatively affect the basal adipogenic potential of tested ASCs through a FABP4-dependant pathway, and provide thus new insights for the development of potential anti-obesity therapeutic approach in both animals and humans.


Assuntos
Células-Tronco Mesenquimais , Síndrome Metabólica , Animais , Cavalos , Humanos , Tecido Adiposo/metabolismo , Globulina de Ligação a Hormônio Sexual/genética , Globulina de Ligação a Hormônio Sexual/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adipogenia/genética , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/uso terapêutico , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Células-Tronco Mesenquimais/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
9.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511204

RESUMO

Medicinal signaling cells (MSC) exhibit distinct molecular signatures and biological abilities, depending on the type of tissue they originate from. Recently, we isolated and described a new population of stem cells residing in the coronary corium, equine hoof progenitor cells (HPCs), which could be a new promising cell pool for the treatment of laminitis. Therefore, this study aimed to compare native populations of HPCs to well-established adipose-derived stem cells (ASCs) in standard culture conditions and in a pro-inflammatory milieu to mimic a laminitis condition. ASCs and HPCs were either cultured in standard conditions or subjected to priming with a cytokines cocktail mixture. The cells were harvested and analyzed for expression of key markers for phenotype, mitochondrial metabolism, oxidative stress, apoptosis, and immunomodulation using RT-qPCR. The morphology and migration were assessed based on fluorescent staining. Microcapillary cytometry analyses were performed to assess the distribution in the cell cycle, mitochondrial membrane potential, and oxidative stress. Native HPCs exhibited a similar morphology to ASCs, but a different phenotype. The HPCs possessed lower migration capacity and distinct distribution across cell cycle phases. Native HPCs were characterized by different mitochondrial dynamics and oxidative stress levels. Under standard culture conditions, HPCs displayed different expression patterns of apoptotic and immunomodulatory markers than ASCs, as well as distinct miRNA expression. Interestingly, after priming with the cytokines cocktail mixture, HPCs exhibited different mitochondrial dynamics than ASCs; however, the apoptosis and immunomodulatory marker expression was similar in both populations. Native ASCs and HPCs exhibited different baseline expressions of markers involved in mitochondrial dynamics, the oxidative stress response, apoptosis and inflammation. When exposed to a pro-inflammatory microenvironment, ASCs and HPCs differed in the expression of mitochondrial condition markers and chosen miRNAs.


Assuntos
Casco e Garras , Células-Tronco Mesenquimais , Animais , Cavalos , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/metabolismo , Citocinas/metabolismo
10.
Front Microbiol ; 14: 1223123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434714

RESUMO

Propenylbenzenes, including isosafrole, anethole, isoeugenol, and their derivatives, are natural compounds found in essential oils from various plants. Compounds of this group are important and valuable, and are used in the flavour and fragrance industries as well as the pharmaceutical and cosmetic industries. The aim of this study was to develop an efficient process for synthesising oxygenated derivatives of these compounds and evaluate their potential biological activities. In this paper, we propose a two-step chemo-enzymatic method. The first step involves the synthesis of corresponding diols 1b-5b from propenylbenzenes 1a-5avia lipase catalysed epoxidation followed by epoxide hydrolysis. The second step involves the microbial oxidation of a diasteroisomeric mixture of diols 1b-5b to yield the corresponding hydroxy ketones 1c-4c, which in this study was performed on a preparative scale using Dietzia sp. DSM44016, Rhodococcus erythropolis DSM44534, R. erythropolis PCM2150, and Rhodococcus ruber PCM2166. Application of scaled-up processes allowed to obtain hydroxy ketones 1-4c with the following yield range 36-62.5%. The propenylbenzene derivatives thus obtained and the starting compounds were tested for various biological activities, including antimicrobial, antioxidant, haemolytic, and anticancer activities, and their impact on membrane fluidity. Fungistatic activity assay against selected strains of Candida albicans results in MIC50 value varied from 37 to 124 µg/mL for compounds 1a, 3a-c, 4a,b, and 5a,b. The highest antiradical activity was shown by propenylbenzenes 1-5a with a double bond in their structure with EC50 value ranged from 19 to 31 µg/mL. Haemolytic activity assay showed no cytotoxicity of the tested compounds on human RBCs whereas, compounds 2b-4b and 2c-4c affected the fluidity of the RBCs membrane. The tested compounds depending on their concentration showed different antiproliferative activity against HepG2, Caco-2, and MG63. The results indicate the potential utility of these compounds as fungistatics, antioxidants, and proliferation inhibitors of selected cell lines.

11.
Stem Cell Rev Rep ; 19(5): 1507-1523, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37039946

RESUMO

Gingiva-derived mesenchymal stromal cells (GMSCs) are multipotent cells characterized by multilineage differentiation potential, proliferative expansion, and unique immunomodulatory ability, making them attractive as a new treatment of periodontal regeneration. In this study, GMSCs obtained from the gingiva of healthy cats (HE) as well as from cats affected by tooth resorption (TR) were isolated and characterized. Feline GMSCs (fGMSCs) from HE patients exhibited fibroblast-like morphology, developed cellular body, specific growth pattern, high expansion, and proliferative potential as well as reduced senescence signature. fGMSCs demonstrated high s-100 and IL-10 positive cells, while simultaneously having low activity of IL-1. Moreover, high activity of ki-67 combined with reduced senescence markers were noted. In comparison, GMSCs from cats with TR exhibited enlarged nuclei and flat, irregular shape along with increased expression of CD44, s-100 and CD45 and downregulation of CD73. GMSCs from TR cats showed lower ability to form colonies, increased incidence of apoptosis, higher number of senescent cells, and reduced cell migration. Upregulation of pro-inflammatory cytokines was also noted in the TR group along with lower expression of mTOR and miR-17 and upregulation of miR-378. Mitochondrial dynamics, biogenesis and antioxidant properties are also negatively impacted in this group. Collectively, our findings suggest that GMSCs isolated from the gingiva of cats affected with TR have deteriorated functionality caused by impaired proliferation and growth and possibly mediated via mitochondrial dysfunction. fGMSCs or their EV's should be further investigated for their role in the pathophysiology of TR in cats.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Gatos , Animais , Gengiva , Inflamação/metabolismo , Estresse Oxidativo , Apoptose , MicroRNAs/metabolismo
12.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108282

RESUMO

The endoplasmic reticulum (ER) fulfills essential duties in cell physiology, and impairment of this organelle's functions is associated with a wide number of metabolic diseases. When ER stress is generated in the adipose tissue, it is observed that the metabolism and energy homeostasis of the adipocytes are altered, leading to obesity-associated metabolic disorders such as type 2 diabetes (T2D). In the present work, we aimed to evaluate the protective effects of Δ9-tetrahydrocannabivarin (THCV, a cannabinoid compound isolated from Cannabis sativa L.) against ER stress in adipose-derived mesenchymal stem cells. Our results show that pre-treatment with THCV prevents the subcellular alteration of cell components such as nuclei, F-actin, or mitochondria distribution, and restores cell migration, cell proliferation and colony-forming capacity upon ER stress. In addition, THCV partially reverts the effects that ER stress induces regarding the activation of apoptosis and the altered anti- and pro-inflammatory cytokine profile. This indicates the protective characteristics of this cannabinoid compound in the adipose tissue. Most importantly, our data demonstrate that THCV decreases the expression of genes involved in the unfolded protein response (UPR) pathway, which were upregulated upon induction of ER stress. Altogether, our study shows that the cannabinoid THCV is a promising compound that counters the harmful effects triggered by ER stress in the adipose tissue. This work paves the way for the development of new therapeutic means based on THCV and its regenerative properties to create a favorable environment for the development of healthy mature adipocyte tissue and to reduce the incidence and clinical outcome of metabolic diseases such as diabetes.


Assuntos
Canabinoides , Diabetes Mellitus Tipo 2 , Células-Tronco Mesenquimais , Humanos , Adipogenia , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Estresse do Retículo Endoplasmático , Inflamação/tratamento farmacológico
13.
Front Endocrinol (Lausanne) ; 14: 1149610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020593

RESUMO

Background: Equine metabolic syndrome (EMS) is a multifactorial pathology gathering insulin resistance, low-grade inflammation and past or chronic laminitis. Among the several molecular mechanisms underlying EMS pathogenesis, increased negative insulin signalling regulation mediated by protein tyrosine phosphatase 1 B (PTP1B) has emerged as a critical axis in the development of liver insulin resistance and general metabolic distress associated to increased ER stress, inflammation and disrupted autophagy. Thus, the use of PTP1B selective inhibitors such as MSI-1436 might be considered as a golden therapeutic tool for the proper management of EMS and associated conditions. Therefore, the present investigation aimed at verifying the clinical efficacy of MSI-1436 systemic administration on liver metabolic balance, insulin sensitivity and inflammatory status in EMS affected horses. Moreover, the impact of MSI-1436 treatment on liver autophagy machinery and associated ER stress in liver tissue has been analysed. Methods: Liver explants isolated from healthy and EMS horses have been treated with MSI-1436 prior to gene and protein expression analysis of main markers mediating ER stress, mitophagy and autophagy. Furthermore, EMS horses have been intravenously treated with a single dose of MSI-1436, and evaluated for their metabolic and inflammatory status. Results: Clinical application of MSI-1436 to EMS horses restored proper adiponectin levels and attenuated the typical hyperinsulinemia and hyperglycemia. Moreover, administration of MSI-1436 further reduced the circulating levels of key pro-inflammatory mediators including IL-1ß, TNF-α and TGF-ß and triggered the Tregs cells activation. At the molecular level, PTP1B inhibition resulted in a noticeable mitigation of liver ER stress, improvement of mitochondrial dynamics and consequently, a regulation of autophagic response. Similarly, short-term ex vivo treatment of EMS liver explants with trodusquemine (MSI-1436) substantially enhanced autophagy by upregulating the levels of HSC70 and Beclin-1 at both mRNA and protein level. Moreover, the PTP1B inhibitor potentiated mitophagy and associated expression of MFN2 and PINK1. Interestingly, inhibition of PTP1B resulted in potent attenuation of ER stress key mediators' expression namely, CHOP, ATF6, HSPA5 and XBP1. Conclusion: Presented findings shed for the first time promising new insights in the development of an MSI-1436-based therapy for proper equine metabolic syndrome intervention and may additionally find potential translational application to human metabolic syndrome treatment.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Animais , Humanos , Autofagia , Inibidores Enzimáticos , Cavalos , Inflamação , Fígado/metabolismo , Síndrome Metabólica/metabolismo , Estresse do Retículo Endoplasmático
14.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982806

RESUMO

The purpose of this study was to describe the use of PLDLA/TPU matrix enriched with cyclosporine A (CsA) as a therapeutic platform in horses with immune-mediated keratitis (IMMK) with an in vitro evaluation CsA release and degradation of the blend as well as determination of the safety and efficacy of that platform used in the animal model. The kinetics of the CsA release from matrices constructed of thermoplastic polyurethane (TPU) polymer and a copolymer of L-lactide with DL-lactide (PLDLA) (80:20) in the TPU (10%) and a PLDL (90%) polymer blend were studied. Moreover, we used the STF (Simulated Tear Fluid) at 37 °C as a biological environment to assess the CsA release and its degradation. Additionally, the platform described above was injected subconjunctival in the dorsolateral quadrant of the globe after standing sedation of horses with diagnosed superficial and mid-stromal IMMK. The obtained results indicated that the CsA release rate in the fifth week of the study increased significantly by the value of 0.3% compared to previous weeks. In all of the cases, the TPU/PLA doped with 12 mg of the CsA platform effectively reduced the clinical symptoms of keratitis, leading to the complete remission of the corneal opacity and infiltration four weeks post-injection. The results from this study showed that the PLDLA/TPU matrix enriched with the CsA platform was well tolerated by the equine model and effective in treating superficial and mid-stromal IMMK.


Assuntos
Ciclosporina , Ceratite , Cavalos , Animais , Ciclosporina/uso terapêutico , Poliuretanos , Ceratite/tratamento farmacológico , Ceratite/veterinária
15.
Stem Cell Res Ther ; 14(1): 54, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36978118

RESUMO

BACKGROUND: Progression of senile osteoporosis is associated with deteriorated regenerative potential of bone marrow-derived mesenchymal stem/stromal cells (BMSCs). According to the recent results, the senescent phenotype of osteoporotic cells strongly correlates with impaired regulation of mitochondria dynamics. Moreover, due to the ageing of population and growing osteoporosis incidence, more efficient methods concerning BMSCs rejuvenation are intensely investigated. Recently, miR-21-5p was reported to play a vital role in bone turnover, but its therapeutic mechanisms in progenitor cells delivered from senile osteoporotic patients remain unclear. Therefore, the goal of this paper was to investigate for the first time the regenerative potential of miR-21-5p in the process of mitochondrial network regulation and stemness restoration using the unique model of BMSCs isolated from senile osteoporotic SAM/P6 mice model. METHODS: BMSCs were isolated from healthy BALB/c and osteoporotic SAM/P6 mice. We analysed the impact of miR-21-5p on the expression of crucial markers related to cells' viability, mitochondria reconstruction and autophagy progression. Further, we established the expression of markers vital for bone homeostasis, as well as defined the composition of extracellular matrix in osteogenic cultures. The regenerative potential of miR-21 in vivo was also investigated using a critical-size cranial defect model by computed microtomography and SEM-EDX imaging. RESULTS: MiR-21 upregulation improved cells' viability and drove mitochondria dynamics in osteoporotic BMSCs evidenced by the intensification of fission processes. Simultaneously, miR-21 enhanced the osteogenic differentiation of BMSCs evidenced by increased expression of Runx-2 but downregulated Trap, as well as improved calcification of extracellular matrix. Importantly, the analyses using the critical-size cranial defect model indicated on a greater ratio of newly formed tissue after miR-21 application, as well as upregulated content of calcium and phosphorus within the defect site. CONCLUSIONS: Our results demonstrate that miR-21-5p regulates the fission and fusion processes of mitochondria and facilitates the stemness restoration of senile osteoporotic BMSCs. At the same time, it enhances the expression of RUNX-2, while reduces TRAP accumulation in the cells with deteriorated phenotype. Therefore, miR-21-5p may bring a novel molecular strategy for senile osteoporosis diagnostics and treatment.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Animais , Camundongos , Envelhecimento/genética , Células da Medula Óssea , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Osteogênese/genética , Osteoporose/metabolismo , Fenótipo
17.
PLoS One ; 18(1): e0278566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649358

RESUMO

Protein tyrosine phosphatase PTP1B is considered as a key metabolic enzyme that has been reported to be associated with insulin resistance onset, and underlying cellular metabolic malfunctions, including ER stress and mitochondrial failure. In this study, effects of selective PTP1B inhibition using MSI-1436 on cellular apoptosis, oxidative stress, mitochondrial dysfunction and ER stress have been assessed using an in vitro model of Tunicamycin induced ER stress in HepG2 cell line. Inhibition of PTP1B using MSI-1436 significantly increased cell viability and reduced the number of apoptotic cells as well as the expression of key apoptosis initiators and effectors. MSI-1436 further mitigated ER stress, by downregulating the expression of IRE1, ATF6 and PERK transcripts, all being key ER stress sensors. Interestingly, MSI-1436 inhibited the XBP1 splicing, and thus its UPR-associated transcriptional activity. PTP1B inhibition further enabled to restore proper mitochondrial biogenesis, by improving transmembrane potential, and diminishing intracellular ROS while restoring of endogenous antioxidant enzymes genes expression. PTP1B inhibition using MSI-1436 could improve cellular apoptosis and metabolic integrity through the mitigation of ER and mitochondrial stress signalling pathways, and excessive ROS accumulation. This strategy may be useful for the treatment of metabolic disorders including IR, NAFLD and diabetes.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Transdução de Sinais , Proteína 1 de Ligação a X-Box , Humanos , Linhagem Celular , Espécies Reativas de Oxigênio/farmacologia , Tunicamicina/farmacologia , Proteína 1 de Ligação a X-Box/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Splicing de RNA
20.
Stem Cell Rev Rep ; 19(4): 1124-1134, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36658383

RESUMO

Equine metabolic syndrome (EMS) is recognized as one of the leading cause of health threatening in veterinary medicine worldwide. Recently, PTP1B inhibition has been proposed as an interesting strategy for liver insulin resistance reversion in both equines and humans, however as being a multifactorial disease, proper management of EMS horses further necessities additional interventional approaches aiming at repairing and restoring liver functions. In this study, we hypothesized that in vitro induction of Eq_ASCs hepatogenic differentiation will generate a specialized liver progenitor-like cell population exhibiting similar phenotypic characteristics and regenerative potential as native hepatic progenitor cells. Our obtained data demonstrated that Eq_ASCs-derived liver progenitor cells (Eq_HPCs) displayed typical flattened polygonal morphology with packed fragmented mitochondrial net, lowered mesenchymal CD105 and CD90 surface markers expression, and significant high expression levels of specific hepatic lineage genes including PECAM-1, ALB, AFP and HNF4A. therewith, generated Eq_HPCs exhibited potentiated stemness and pluripotency markers expression (NANOG, SOX-2 and OCT-4). Hence, in vitro generation of hepatic progenitor-like cells retaining high differentiation capacity represents a promising new approach for the establishment of cell-based targeted therapies for the restoration of proper liver functions in EMS affected horses.


Assuntos
Resistência à Insulina , Células-Tronco Mesenquimais , Síndrome Metabólica , Humanos , Cavalos , Animais , Síndrome Metabólica/terapia , Síndrome Metabólica/metabolismo , Células-Tronco/metabolismo , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA